
MATH 280 Multivariate Calculus Fall 2011

Fundamental theorems of calculus

Note: In each of the following theorems, hypotheses on continuity of the integrand
and “niceness” of the relevant region are omitted in order to focus on other details.

Fundamental Theorem for Definite Integrals

If F′(x) = f (x), then
∫ b

a
f (x) dx = F(b)− F(a).

By substituting, we can also write the conclusion as∫ b

a
F′(x) dx = F(b)− F(a).

Fundamental Theorem for Line Integrals
Let C be a curve that starts at A and ends at B. If ~∇V = ~F, then∫

C

~F · d~r = V(B)−V(A).

By substituting, we can also write the conclusion as∫
C

~∇V · d~r = V(B)−V(A).

Divergence Theorem
Let D be a solid region with the closed surface S as the edge of D and area element
vectors d~A for S oriented outward. If ~∇ · ~F = f , then∫∫∫

D

f dV =
∫����∫

S

~F · d~A.

By substituting, we can also write the conclusion as∫∫∫
D

(~∇ · ~F) dV =
∫����∫

S

~F · d~A.

Stokes’ Theorem
Let S be a surface with the closed curve C as the edge of S. Orient the area element
vectors d~A and the curve C to have a right-hand relation. If ~∇× ~F = ~G, then∫∫

S

~G · d~A =
∮
C

~F · d~r.

By substituting, we can also write the conclusion as∫∫
S

(~∇× ~F) · d~A =
∮
C

~F · d~r.



Green’s Theorem
We can derive Green’s Theorem as a special case of Stokes’ Theorem. Consider a
vector field of the form ~F = P(x, y) ı̂ + Q(x, y) ̂ + 0 k̂. Note that the curl of ~F is

~∇× ~F =
(
0− 0

)
ı̂−
(
0− 0

)
̂ +
(∂Q

∂x
− ∂P

∂y

)
k̂ =

(∂Q
∂x
− ∂P

∂y

)
k̂.

Let D be a planar region in the xy-plane with the closed curve C as the edge of D.
Orient the curve C counterclockwise. If we think of D as a surface, we can express
the area element vectors as d~A = dx dy k̂.
We now compute

(~∇× ~F) · d~A =
(∂Q

∂x
− ∂P

∂y

)
k̂ · dx dy k̂ =

(∂Q
∂x
− ∂P

∂y

)
dx dy.

Using this special case in the conclusion of Stokes’ Theorem, we get∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dx dy =

∮
C

(
P ı̂ + Q ̂

)
· d~r.

Using an alternate notation for line integrals, this can also be written as

∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dx dy =

∮
C

P dx + Q dy.

Common structure among these fundamental theorems
The theorems given above all have the same all of which have the same basic struc-
ture: Integrating the derivative of a function over a region gives the same value as inte-
grating the function itself over the edge of the region. In the case of a one-dimensional
region such as a curve, the edge consists of only two points so integrating over the
edge reduces to simply adding together two values. Here’s how this basic idea
plays out in the specific cases:

• In the Fundamental Theorem for Definite Integrals, the region is an interval
[a, b] on the input axis so the edge of the region consists of two points a and b
on the axis. The function is a function of one variable and the derivative is the
first kind of derivative you learned about. In words, the theorem says that
integrating the derivative F′ over the interval [a, b] is the same as adding up
the function F for the two endpoints. But wait, isn’t F(b)− F(a) a difference
rather than a sum? Yes, but we can think of it as (−1)F(a) + F(b). The factor
of −1 relates to the issue of orientation. At a, the direction pointing out is the
negative direction while at b, the outward pointing direction is the positive
direction. The factor of −1 reflects the fact that the outward direction at a is
the negative direction.
• In the Fundamental Theorem for Line Integrals, the region is a curve C so the

edge consists of two points A and B or on the plane or in space. The function
is a function of two or more variable and the derivative is the gradient. In



words, the theorem says that integrating the gradient ~∇V over the curve C
is the same as adding up the function V for the two endpoints. We usually
write this as V(B)−V(A) but can think of it as (−1)V(a) + V(b). As above,
the factor of −1 relates to the issue of orientation and is related to the fact
that d~r points into the curve at A and out of the curve at B.
• In Green’s Theorem, the region is a planar region D with edge consisting of a

closed curve C. The function is a planar vector field and the derivative is the
k̂ component of the curl (which is the only non-zero component of the curl
for a planar vector field). In words, the theorem says that integrating the curl
∂Q/∂x− ∂P/∂y over the region D is the same as integrating the vector field
P ı̂ + Q ̂ over the curve C.

• In Stoke’s Theorem, the region is a surface S in space with edge consisting of
a closed curve C. The function is a vector field and the derivative is the curl.
In words, the theorem says that integrating the curl ~∇× ~F over the surface S
is the same as integrating the vector field ~F over the curve C.
• In the Divergence Theorem, the region is a solid region in space with edge

consisting of a closed surface S. The function is a vector field and the deriva-
tive is the divergence. In words, the theorem says that integrating the diver-
gence ~∇ · ~F over the solid region D is the same as integrating the vector field
~F over the surface S.

We can also organize these in terms of the dimension of the region and its edge:

• In the Fundmental Theorems for Definite Integrals and Line Integrals, the re-
gion is one-dimensional (an interval or a curve) and the edge is zero-dimensional
(a set of two points).
• In Green’s Theorem and Stoke’s Theorem, the region is two-dimensional (a

planar region or a surface) and the edge is one-dimensional (a curve).
• In the Divergence Theorem, the region is three-dimensional (a solid region)

and the edge is two-dimensional (a surface).

Importance of the fundamental theorems
The fundamental theorems are important for both aesthetic value and as useful
tools. Aesthetically, the fundamental theorems provide a beautiful unity among
the various types of function, derivative, and integral we have explored in calcu-
lus. As tools, we use the fundamental theorems in two primary ways:

• Rather than evaluate an integral directly, we can trade it in for a related ex-
pression that is easier to evaluate. You are very familiar with doing this when

you trade in a definite integral
∫ b

a
f (x) dx for the sum (−1)F(a) + F(b) =

F(b)− F(a). Problems 1, 3, and 4 give you practice with this type of “trading
in” using the other fundamental theorems.
• Given information about the derivative of a function at each point in a region,

we can deduce information about certain integrals for the function itself (and
vice versa). Problem 2 gives you an example of this use.



Problems: Fundamental theorems of calculus

1. Use the Divergence Theorem to evaluate
∫����∫

S

~F · d~A where

~F = (z− x) ı̂ + (x− y) ̂ + (y− z) k̂

and S is the sphere of radius 4 centered at the origin with d~A oriented out-
ward.

Answer:
∫����∫

S

~F · d~A = −256π

2. Suppose that ~F is a vector field with ~∇ · ~F = 0 for all points in R3. Show that∫����∫
S

~F · d~A = 0 for any closed surface S in R3.

3. Use Stokes’ Theorem (or Green’s Theorem) to evaluate
∮
C

~F · d~r where

~F = y2 ı̂− x2 ̂ and C is the square in the xy-plane with corners at (0, 0), (1, 0),
(1, 1), and (0, 1) traversed counterclockwise.

Answer:
∮
C

~F · d~r = −2

4. Suppose C is a simple closed curve in the xy-plane. Let ~F = −y ı̂ + x ̂ and

consider the line integral
∮
C

~F · d~r. Use Stokes’ Theorem (or Green’s Theorem)

to relate the value of this line integral to the area of the region enclosed by C.
Note: A simple curve is one with no self-intersections so a simple closed curve
is a loop with no self-interesections.

5. Use your result from Problem 4 to compute the area enclosed by the ellipse
x2

a2 +
y2

b2 = 1.


